4.7 Article

Spatiotemporal electrochemical sensing in a smart contact lens

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 303, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2019.127203

Keywords

Smart contact lenses; Electrochemical sensing; Non-invasive devices; Biosensors; Microelectrode arrays

Funding

  1. EPSRC CDT in Integrative Sensing and Measurement [EP/L016753/1]

Ask authors/readers for more resources

An electrochemical smart contact lens (ESCL) capable of real-speed spatiotemporal electrochemical sensing across the surface of the eye is demonstrated. Four microelectrode arrays, each comprising 33 gold microdiscs of 30 mu m diameter, and a distributed common gold counter electrode, are integrated into a soft smart contact lens platform based on polyimide and thermoplastic polyurethane. Using a novel fast-switching chronoamperometric method, an electrochemical 'video' of concentration variation in a model eye under flow conditions is produced, in which the introduction, progress, mixing and drainage of fluid of varying concentration can be observed. The device builds on previous work towards a platform suitable for clinical use and has proven to be robust under expected use conditions, with sensing performance remaining unchanged after thermoforming and repeated mechanical deformation. This work represents a significant step forward in ESCL design, and constitutes significant progress towards a technology with real clinical utility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available