4.7 Article

Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 301, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2019.111784

Keywords

Hydrogel; Actuator; Thermal actuation; Porous network; PNIPAm; Melt spinning

Funding

  1. Australian Research Council Centre of Excellence Scheme [CE 140100012]
  2. Faculty of Science, Medicine and Health, University of Wollongong

Ask authors/readers for more resources

A custom centrifugal melt-spinning technique was used to prepare randomly arranged 3D fibre networks from commercially available shellac flakes. These fibre networks were implanted into thermally actuating poly(N-isopropylacrylamide)-alginate hydrogels and then removed chemically to yield an interconnected porous gel structure. Pore diameter was capable of being controlled through the fibre-spinning temperature, where it was shown that shellac fibres spun at a lower temperature yielded larger diameter pores in the resultant gels. These gels demonstrated a fast actuation, with a 77 % volume loss of a cylindrical sample in just 30 s when immersed in a 60 degrees C water bath. It was shown that the volume change mechanism overcame the well-known dimensional constraint, which has previously governed hydrogel swelling/deswelling, through minimisation of the water diffusion distance from the gel to the porous network. With such rapidly actuating materials, potential applications for these hydrogels lie in thermally responsive valves and artificial muscles for soft robotics or microfluidics. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available