4.6 Article

A Plastic Optical Fiber Sensing System for Bridge Deflection Measurement

Journal

SENSORS
Volume 20, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/s20020480

Keywords

deflection measurement; connected pipe system; long-span bridge; liquid level sensor; plastic optical fiber sensor

Funding

  1. National Natural Science Foundation of China [51308175, 51608162]

Ask authors/readers for more resources

Deflection is one of the key parameters that reflects the state of a bridge. However, deflection measurement is difficult for a bridge that is under operation. Most existing sensors and measuring techniques often do not meet the requirements for health monitoring for various types of bridges. Therefore, based on changes of optical fiber intensity, a novel sensing system using connected pipes to measure bridge deflection in different positions is proposed in this paper. As an absolute reference, the liquid level position along the structure is adopted for the deflection measurement, and an additional external reference to the ground is not needed in this system. The proposed system consists of three parts: connected pipes to connect the measurement points along the structure, liquid to fill in the connected pipes, and the sensing element to detect the change of level. A plastic optical fiber sensor based on the intensity change is used as the sensing element of the developed system. Then, a set of experimental tests are conducted for performance evaluation purposes. Results show that this system has an accurate linear response and high reliability under various environmental conditions. The deflection of the test beam measured by the sensor agrees with linear variable differential transformer (LVDT) within an error margin of 2.1%. The proposed system shows great potential applicability for future health monitoring of long-span bridges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available