4.6 Article

Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception

Journal

SENSORS
Volume 19, Issue 24, Pages -

Publisher

MDPI
DOI: 10.3390/s19245384

Keywords

lateral line system; biomimetics; nanofiber; flow sensor

Funding

  1. National Natural Science Foundation of China [51975030]

Ask authors/readers for more resources

Fish and some amphibians can perform a variety of behaviors in confined and harsh environments by employing an extraordinary mechanosensory organ, the lateral line system (LLS). Inspired by the form-function of the LLS, a hydrodynamic artificial velocity sensor (HAVS) was presented in this paper. The sensors featured a polarized poly (vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]/barium titanate (BTO) electrospinning nanofiber mat as the sensing layer, a polyimide (PI) film with arrays of circular cavities as the substrate, and a poly(methyl methacrylate) (PMMA) pillar as the cilium. The P(VDF-TrFE)/BTO electrospinning nanofiber mat demonstrated enhanced crystallinity and piezoelectricity compared with the pure P(VDF-TrFE) nanofiber mat. A dipole source was employed to characterize the sensing performance of the fabricated HAVS. The HAVS achieved a velocity detection limit of 0.23 mm/s, superior to the conventional nanofiber mat-based flow sensor. In addition, directivity was feasible for the HAVS, which was in accordance with the simulation results. The proposed bio-inspired flexible lateral line sensor with hydrodynamic perception ability shows promising applications in underwater robotics for real-time flow analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available