4.7 Article

Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 721, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137702

Keywords

Antarctic region; Deception Island; Atmospheric aerosols; Particulate matter; Enrichment factors; Backward trajectories

Funding

  1. European Social Fund
  2. University of Zaragoza

Ask authors/readers for more resources

Suspended particulate matter (SPM) measurements and backward air mass trajectory analysis using the HYSPLIT model were performed to better understand the main sources and transport pathways of heavy metals in atmospheric aerosols reaching the Antarctic region. Field campaigns were carried out during the austral summer 2016-2017 at the Gabriel de Castilla Spanish Antarctic Research Station, located on Deception Island. Aerosols were deposited in an air filter through a low-volume sampler and chemically analysed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The study of air masses and high enrichment factor values of several elements (Hf, Zr, As, Cu, Sn, Zn, Pb) together with their correlations (Hf/Zr, V/As, Ti/Mn and Cu/Sn) suggests a potentially significant role of three main sources in this area: remote maritime traffic, local petrol combustion (generators and/or tourist cruises), and remote/local crust. Additionally, the investigation of atmospheric flow patterns through backward trajectory analysis revealed that Hf/Zr correlation was related to a remote crustal origin, V/As to anthropogenic local pollution, Ti/Mn to terrestrial inputs on the island and Cu/Sn to remote anthropogenic sources. Overall, the present study demonstrates the existence of anthropogenic pollution at this remote site from distant as well as local sources following the Antarctic circumpolar wind pattern. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available