4.7 Article

Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 705, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135912

Keywords

Ionizing radiation; Crustacean; Reproduction; Oxidative stress; Mechanism of action; Adverse outcome pathway

Funding

  1. Research Council of Norway through the Centre of Excellence (CoE) project Centre for Environmental Radioactivity (CERAD) [223268]
  2. NIVA Computational Toxicology Program (NCTP)

Ask authors/readers for more resources

High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available