4.7 Article

Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs)

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 698, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134201

Keywords

Wastewater irrigation; Agricultural fields; Bacterial resistance; Metagenomics; ESBLs; Africa

Funding

  1. European Union [655398]
  2. Marie Curie Actions (MSCA) [655398] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

A study was conducted to investigate the impact of raw wastewater use for irrigation on dissemination of bacterial resistance in urban agriculture in African cities. The pollution of agricultural fields by selected antibiotic residues was assessed. The structure and functions of the soil microbial communities, presence of antibiotic resistance genes of human clinical importance and Enterobacteriaceae plasmid replicons were analysed using high throughput metagenomic sequencing. In irrigated fields, the richness of Bacteroidetes and Firmicutes phyla increased by 65% and 15.7%, respectively; functions allocated to microbial communities' adaptation and development increased by 3%. Abundance of antibiotic resistance genes of medical interest was 27% greater in irrigated fields. Extended spectrum beta-lactamase genes identified in irrigated fields included bla(C)(ARB-3), bla(OXA-347). bla(OX)(A-5) and bla(Rm3). The presence of ARGs encoding resistance to amphenicols, beta-lactams. and tetracyclines were associated with the higher concentrations of ciprofloxacin. enrofloxacin and sulfamethoxazole in irrigated fields. Ten Enterobacteriaceae plasmid amplicon groups involved in the wide distribution of ARGs were identified in the fields. IncQ2, CoIE, IncFIC, IncQ1, and IncFII were found in both farming systems; IncW and IncP1 in irrigated fields; and IncY, IncFIB and IncFIA in non-irrigated fields. In conclusion, raw wastewater irrigated African cities could represent a vector for the spread of antibiotic resistance, thus threatening human and animal health. Consumers of products from these farms and farmers could be at risk of acquiring infections due to drug-resistant bacteria. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available