4.8 Article

Cooling of a levitated nanoparticle to the motional quantum ground state

Journal

SCIENCE
Volume 367, Issue 6480, Pages 892-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aba3993

Keywords

-

Funding

  1. European Research Council (ERC CoG QLev4G)
  2. ERA-NET program QuantERA [11299191]
  3. EC
  4. Austrian ministries BMDW
  5. (BMBWF, and research promotion agency FFG)
  6. Austrian Science Fund [952-N36]
  7. (START)
  8. doctoral school CoQuS [W1210]

Ask authors/readers for more resources

Quantum control of complex objects in the regime of large size and mass provides opportunities for sensing applications and tests of fundamental physics. The realization of such extreme quantum states of matter remains a major challenge. We demonstrate a quantum interface that combines optical trapping of solids with cavity-mediated light-matter interaction. Precise control over the frequency and position of the trap laser with respect to the optical cavity allowed us to laser-cool an optically trapped nanoparticle into its quantum ground state of motion from room temperature. The particle comprises 108 atoms, similar to current Bose-Einstein condensates, with the density of a solid object. Our cooling technique, in combination with optical trap manipulation, may enable otherwise unachievable superposition states involving large masses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available