4.8 Article

Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO

Journal

SCIENCE
Volume 367, Issue 6479, Pages 777-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aav2412

Keywords

-

Funding

  1. Saudi Aramco-KAIST CO2 Management Center
  2. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2016R1A2B4011027, NRF-2017M3A7B4042140]

Ask authors/readers for more resources

Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the Nanocatalysts On Single Crystal Edges technique could lead to stable catalyst designs for many challenging reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available