4.5 Article

Effect of temperature on AC conductivity of poly(butyl methacrylate)/cerium dioxide nanocomposites and applicability of different conductivity modeling studies

Journal

RESEARCH ON CHEMICAL INTERMEDIATES
Volume 46, Issue 5, Pages 2579-2594

Publisher

SPRINGER
DOI: 10.1007/s11164-020-04107-w

Keywords

Poly(butyl methacrylate); Ceria; Nanocomposites; X-ray diffraction; Temperature-dependent AC conductivity; DC conductivity modeling

Funding

  1. KSCSTE, Government of Kerala, India [566/2017/KSCSTE]

Ask authors/readers for more resources

In this research, the effect of cerium dioxide (CeO2) nanoparticles on electrical properties of poly(butyl methacrylate) (PBMA) has been investigated. Polymer nanocomposites reinforced with variable contents of CeO2 nanoparticles (3, 5, 7 and 10 wt%) were fabricated by an in situ polymerization method. The formation of nanocomposites was analyzed by FTIR, XRD, SEM and TEM analysis. Also, the AC and DC conductivities of CeO2 nanoparticles-reinforced PBMA were systematically studied with respect to different loadings of CeO2 fillers. The FTIR, XRD and morphological studies revealed that the nanoparticles were well inserted and uniformly dispersed into the macromolecular chain of PBMA. The AC conductivity of PBMA/CeO2 composite increases not only with the loading of nanoparticles but also with the temperature of the system. The activation energy determined from AC electrical conductivity was found to decrease with the frequency and temperature. DC conductivity of the nanocomposites was increased with the insertion of nanoparticles into PBMA. The DC conductivity of all the composites was greater than pure PBMA. The applicability of different theoretical models such as Scarisbrick, Bueche and McCullough equations was compared with the experimentally determined DC conductivity of PBMA/CeO2 nanocomposites. These models fail to explain the conductivity of polymer composite in the entire loading of fillers. Hence, a new theoretical model is proposed in this study and it shows good agreement with the experimentally observed conductivity values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available