4.7 Article

Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil

Journal

RENEWABLE ENERGY
Volume 147, Issue -, Pages 1870-1879

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.09.131

Keywords

Bioenergy; Residual biomass; Densification; Renewable sources; ISO standard

Funding

  1. CAPES [001]

Ask authors/readers for more resources

Lignocellulosic residues are potential sources of renewable energy, but these materials have low energy density and undesirable properties for energy use. For this reason, pelleting is a viable alternative for the biomass energy valorization because it produces high-energy-density solid biofuels. The aim of this research is to evaluate the physical, chemical, and energetic characteristics of pellets produced with lignocellulosic biomass blends (elephant grass [EG], eucalyptus wood [EW], and sugarcane bagasse [SB]) for bioenergy generation. For biomass and pellets, bulk and energy densities, chemical compositions, and heating values, were determined. For pellets, the mechanical durability, fines content, diametrical compression, diameter, length, and unit density were measured. Pellets presented increased heating value, bulk and energetic density, and reduced moisture content. The highest absolute ash contents were found in the compositions and pellets produced with high amounts of EG (2.89%-6.48%). The reduction of EG in the blends has improved the energy properties of pellets. A 55% reduction of ash content was observed in the pellets produced with 50% EG and 50% EW compared with the pellets produced with 100% EG. The pellets produced with biomass blends obtained better energy and mechanical performances when compared with those produced with only one biomass. (c) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available