4.7 Article

Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 236, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2019.111480

Keywords

Sentinel-2; Hyperspectral; Xylella fastidiosa; Temporal change; Radiative transfer

Funding

  1. European Union [635646, 727987]
  2. Science Doctoral Training Centre (Swansea University, UK) [DTC GEO 29]
  3. QuantaLab-IAS-CSIC (Spain)

Ask authors/readers for more resources

Outbreaks of Xylella fastidiosa (Xf) in Europe generate considerable economic and environmental damage, and this plant pest continues to spread. Detecting and monitoring the spatio-temporal dynamics of the disease symptoms caused by Xf at a large scale is key to curtailing its expansion and mitigating its impacts. Here, we combined 3-D radiative transfer modelling (3D-RTM), which accounts for the seasonal background variations, with passive optical satellite data to assess the spatio-temporal dynamics of Xf infections in olive orchards. We developed a 3D-RTM approach to predict Xf infection incidence in olive orchards, integrating airborne hyperspectral imagery and freely available Sentinel-2 satellite data with radiative transfer modelling and field observations. Sentinel-2A time series data collected over a two-year period were used to assess the temporal trends in Xf-infected olive orchards in the Apulia region of southern Italy. Hyperspectral images spanning the same two-year period were used for validation, along with field surveys; their high resolution also enabled the extraction of soil spectrum variations required by the 3D-RTM to account for canopy background effect. Temporal changes were validated with more than 3000 trees from 16 orchards covering a range of disease severity (DS) and disease incidence (DI) levels. Among the wide range of structural and physiological vegetation indices evaluated from Sentinel-2 imagery, the temporal variation of the Atmospherically Resistant Vegetation Index (ARVI) and Optimized Soil-Adjusted Vegetation Index (OSAVI) showed superior performance for DS and DI estimation (r(VALUES)(2) > 0.7, p < 0.001). When seasonal understory changes were accounted for using modelling methods, the error of DI prediction was reduced 3-fold. Thus, we conclude that the retrieval of DI through model inversion and Sentinel-2 imagery can form the basis for operational vegetation damage monitoring worldwide. Our study highlight the value of interpreting temporal variations in model retrievals to detect anomalies in vegetation health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available