4.7 Article

The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts

Journal

RELIABILITY ENGINEERING & SYSTEM SAFETY
Volume 193, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2019.106658

Keywords

Infrastructure; Resilience; Natural hazards

Funding

  1. U.S National Science Foundation [1728209, 1826161]

Ask authors/readers for more resources

Credibly assessing the resilience of energy infrastructure in the face of natural disasters is a salient concern facing researchers, government officials, and community members. Here, we explore the influence of the spatial distribution of disruptions due to hurricanes and other natural hazards on the resilience of power distribution systems. We find that incorporating information about the spatial distribution of disaster impacts has significant implications for estimating infrastructure resilience. Specifically, the uncertainty associated with estimated infrastructure resilience metrics to spatially distributed disaster-induced disruptions is much higher than determined by previous methods. We present a case study of an electric power distribution grid impacted by a major landfalling hurricane. We show that improved characterizations of disaster disruption drastically change the way in which the grid recovers, including changes in emergent system properties such as antifragility. Our work demonstrates that previous methods for estimating critical infrastructure resilience may be overstating the confidence associated with estimated network recoveries due to the lack of consideration of the spatial structure of disruptions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available