4.5 Article

Vanillin-based thiol-ene systems as photoresins for optical 3D printing

Journal

RAPID PROTOTYPING JOURNAL
Volume 26, Issue 2, Pages 402-408

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/RPJ-03-2019-0076

Keywords

Optical three-dimensional printing; Photocross-linking; Real-time photorheometry; Thiol-ene; Vanillin acrylates

Funding

  1. European Social Fund [09.3.3-LMT-K-712]

Ask authors/readers for more resources

Purpose This study aims to present a design and investigation of novel vanillin-based thiol-ene photocurable systems as candidate materials for optical three-dimensional printing. Design/methodology/approach Two vanillin acrylates, vanillin dimethacrylate and vanillin diacrylate, were tested in thiol-ene photocurable systems with 1,3-benzenedithiol. The kinetics of photocross-linking was investigated by real-time photorheometry using two photoinitiators, diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide or ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate in different quantities. The dependencies of rheological properties of resins on the used vanillin derivative, photoinitiator, and the presence of a solvent, as well as structure, thermal and mechanical properties of the selected polymers were investigated. Findings The most rigid polymers were obtained from vanillin diacrylate-based resins without any solvent. The vanillin diacrylate-based polymer possessed higher values of cross-linking density, the yield of insoluble fraction, thermal stability and better mechanical properties in comparison to the vanillin dimethacrylate-based polymer. Originality/value The kinetics of photocross-linking of vanillin-based thiol-ene systems was investigated by real-time photorheometry for the first time. The designed novel photocurable systems based on vanillin acrylates and 1,3-benzenedithiol are promising renewable photoresins for optical three-dimensional printing on demand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available