4.8 Article

Designing a hybrid electrode toward high energy density with a staged Li+ and PF6- deintercalation/intercalation mechanism

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1918442117

Keywords

Li-ion battery; intercalation; hybrid electrode

Funding

  1. Australian Research Council [DP170102406, FT150100109, FT160100251]
  2. US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office
  3. DOE Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

Existing lithium-ion battery technology is struggling to meet our increasing requirements for high energy density, long lifetime, and low-cost energy storage. Here, a hybrid electrode design is developed by a straightforward reengineering of commercial electrode materials, which has revolutionized the rocking chair mechanism by unlocking the role of anions in the electrolyte. Our proof-of-concept hybrid LiFePO4 (LFP)/graphite electrode works with a staged deintercalation/ intercalation mechanism of Li+ cations and PF6- anions in a broadened voltage range, which was thoroughly studied by ex situ X-ray diffraction, ex situ Raman spectroscopy, and operando neutron powder diffraction. Introducing graphite into the hybrid electrode accelerates its conductivity, facilitating the rapid extraction/insertion of Li+ from/into the LFP phase in 2.5 to 4.0 V. This charge/discharge process, in turn, triggers the in situ formation of the cathode/ electrolyte interphase (CEI) layer, reinforcing the structural integrity of the whole electrode at high voltage. Consequently, this hybrid LFP/graphite-20% electrode displays a high capacity and long-term cycling stability over 3,500 cycles at 10 C, superior to LFP and graphite cathodes. Importantly, the broadened voltage range and high capacity of the hybrid electrode enhance its energy density, which is leveraged further in a full-cell configuration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available