4.7 Article

Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene adipate-co-terephthalate) in-situ nanofibrillar composites with high strength, good toughness and excellent heat resistance

Journal

POLYMER DEGRADATION AND STABILITY
Volume 171, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2019.109044

Keywords

In-situ nanofibrillar composites; Loop oscillating push-pull molding technique; Mechanical properties; Thermostability

Funding

  1. National Natural Science Foundation of China [51803062, 51573063]
  2. Natural Science Foundation of Guangdong Province [2018A030310379, 2019A1515012125]
  3. Science and Technology Program of Guangzhou [201804010110, 201904010272]

Ask authors/readers for more resources

Fully biodegradable and renewable polymer materials have shown broad application prospects with minimal environmental degradation. In the current study, eco-friendly poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) in-situ nanofibrillar composites with hierarchical crystal architectures, high mechanical performance and excellent heat resistance properties were fabricated using the loop oscillating push-pull molding (LOPPM) technique and in-situ PBAT nanofibrils were used to induce highly oriented hybrid shish-kebabs. Benefiting from the flow-induced crystallization and abundant hybrid shish-kebabs, the overall crystallinity of LOPPM-processed PLA/10 wMPBAT sample increased by 4-fold than the conventional injection-molded (CIM) neat PIA sample. The present work indicated that the tensile strength, Young's modulus, elongation at break and impact strength of LOPPM-processed PLA/10 wt%PBAT were higher than the CIM-processed PLA by 36.2%, 12.5%, 181.8% and 253.7%, respectively. The vicat softening temperature was elevated from 59.6 degrees C to 104.8 degrees C, and the thermostability also enhanced due to the construction of hybrid shish-kebabs. Strong, tough and heat-resistant PLA/PBAT in situ nanofibrillar composites exhibited outstanding properties for use under more demanding circumstances and are environmentally friendly. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available