4.6 Article

A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species

Journal

PLOS ONE
Volume 15, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0222691

Keywords

-

Funding

  1. Department of Energy [DE-SC0016365, DE-SC0020351]
  2. U.S. Department of Energy (DOE) [DE-SC0016365, DE-SC0020351] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

We have designed a pyrocosm to enable fine-scale dissection of post-fire soil microbial communities. Using it we show that the peak soil temperature achieved at a given depth occurs hours after the fire is out, lingers near this peak for a significant time, and is accurately predicted by soil depth and the mass of charcoal burned. Flash fuels that produce no large coals were found to have a negligible soil heating effect. Coupling this system with Illumina MiSeq sequencing of the control and post-fire soil we show that we can stimulate a rapid, massive response by Pyronema, a well-known genus of pyrophilous fungus, within two weeks of a test fire. This specific stimulation occurs in a background of many other fungal taxa that do not change noticeably with the fire, although there is an overall reduction in richness and evenness. We introduce a thermo-chemical gradient model to summarize the way that heat, soil depth and altered soil chemistry interact to create a predictable, depthstructured habitat for microbes in post-fire soils. Coupling this model with the temperature relationships found in the pyrocosms, we predict that the width of a survivable goldilocks zone, which achieves temperatures that select for postfire-adapted microbes, will stay relatively constant across a range of fuel loads. In addition we predict that a larger necromass zone, containing labile carbon and nutrients from recently heat-killed organisms, will increase in size rapidly with addition of fuel and then remain nearly constant in size over a broad range of fuel loads. The simplicity of this experimental system, coupled with the availability of a set of sequenced, assembled and annotated genomes of pyrophilous fungi, offers a powerful tool for dissecting the ecology of post-fire microbial communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available