4.8 Article

Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity

Journal

PLANT JOURNAL
Volume 102, Issue 4, Pages 649-665

Publisher

WILEY
DOI: 10.1111/tpj.14731

Keywords

lipid-channel interaction; phosphatidic acid; Shaker K+ channel; AKT2; OsAKT2; two-electrode voltage clamp; rice

Categories

Funding

  1. National Natural Science Foundation of China [31400234, 31770294]
  2. State Key Laboratory of Plant Physiology and Biochemistry [SKLPPBKF1904]
  3. Natural Science Foundation of Jiangsu province in China [BK20140699]
  4. Fundamental Research Funds for the Central Universities [KJQN201531]

Ask authors/readers for more resources

The plant Shaker K+ channel AtAKT2 has been identified as a weakly rectifying channel that can stabilize membrane potentials to promote photoassimilate phloem loading and translocation. Thus, studies on functional characterization and regulatory mechanisms of AtAKT2-like channels in crops are highly important for improving crop production. Here, we identified the rice OsAKT2 as the ortholog of Arabidopsis AtAKT2, which is primarily expressed in the shoot phloem and localized at the plasma membrane. Using an electrophysiological assay, we found that OsAKT2 operated as a weakly rectifying K+ channel, preventing H+/sucrose-symport-induced membrane depolarization. Three critical amino acid residues (K193, N206, and S326) are essential to the phosphorylation-mediated gating change of OsAKT2, consistent with the roles of the corresponding sites in AtAKT2. Disruption of OsAKT2 results in delayed growth of rice seedlings under short-day conditions. Interestingly, the lipid second messenger phosphatidic acid (PA) inhibits OsAKT2-mediated currents (both instantaneous and time-dependent components). Lipid dot-blot assay and liposome-protein binding analysis revealed that PA directly bound with two adjacent arginine residues in the ANK domain of OsAKT2, which is essential to PA-mediated inhibition of OsAKT2. Electrophysiological and phenotypic analyses also showed the PA-mediated inhibition of AtAKT2 and the negative correlation between intrinsic PA level and Arabidopsis growth, suggesting that PA may inhibit AKT2 function to affect plant growth and development. Our results functionally characterize the Shaker K+ channel OsAKT2 and reveal a direct link between phospholipid signaling and plant K+ channel modulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available