4.7 Article

Efficacy of Fungicides Applied for Protectant and Curative Activity Against Myrtle Rust

Journal

PLANT DISEASE
Volume 104, Issue 8, Pages 2123-2129

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-10-19-2106-RE

Keywords

strobilurin; demethylation inhibitor; Austropuccinia psidii; disease management; inoculation; fungicide bioefficacy; myrtle rust

Categories

Funding

  1. Ministry for Primary Industries, New Zealand

Ask authors/readers for more resources

Myrtle rust, caused by the pathogen Austropuccinia psidii, affects species of the Myrtaceae, many of which are endemic to Australia and New Zealand. Originating from South America, A. psidii is now present in both countries, necessitating effective chemical control for disease management. Using an artificial inoculation protocol, the efficacy of eight fungicides (tebuconazole/trifloxystrobin, cyproconazole/azoxystrobin, fosetyl aluminum, triforine, triadimenol, oxycarboxin, copper, and tebuconazole) applied as curative or protectant treatments was tested on two native New Zealand species (Lophomyrtus x ralphii and Metrosideros excelsa). The impacts of rate (x2), frequency (single or double), and timing (preor postinfection) of fungicide application were investigated. Overall, the most effective fungicides tested across both species were those that included a demethylation inhibitor and strobilurin mix, notably tebuconazole/trifloxystrobin (Scorpio) and cyproconazole/azoxystrobin (Amistar Xtra). These fungicides significantly reduced infection of host plants relative to the water control. Timing of application significantly affected bioefficacy, with applications made 7 days before inoculation or 7 days after inoculation being generally the most effective. The rate of fungicide application was not significant for both host species, with few interaction terms showing overall significance. Key findings from this study will set the foundation for further fungicide bioefficacy research conducted to evaluate formulations and adjuvant mixtures, determine suitable application methods for enhanced retention and coverage, and derive optimum application time for effective protection of native and exotic Myrtaceae species in New Zealand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available