4.7 Article

Polyploidization-driven differentiation of freezing tolerance in Solidago canadensis

Journal

PLANT CELL AND ENVIRONMENT
Volume 43, Issue 6, Pages 1394-1403

Publisher

WILEY
DOI: 10.1111/pce.13745

Keywords

DNA methylation; freezing tolerance; gene expression; ICE1 gene; polyploidization; Solidago canadensis

Categories

Ask authors/readers for more resources

Solidago canadensis, originating from the temperate region of North America, has expanded southward to subtropical regions through polyploidization. Here we investigated whether freezing tolerance of S. canadensis was weakened during expansion. Measurement of the temperature causing 50% ruptured cells (LT50) in 35 S. canadensis populations revealed ploidy-related differentiation in freezing tolerance. Freezing tolerance was found to decrease with increasing ploidy. The polyploid populations of S. canadensis had lower ScICE1 gene expression levels but more ScICE1 gene copies than the diploids. Furthermore, more DNA methylation sites in the ScICE1 gene promoter were detected in the polyploids than in the diploids. The results suggest that promoter methylation represses the expression of multi-copy ScICE1 genes, leading to weaker freezing tolerance in polyploid S. canadensis compared to the diploids. The study provides empirical evidence that DNA methylation regulates expression of the gene copies and supports polyploidization-driven adaptation to new environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available