4.7 Article

Real-fluid phase transition in cavitation modeling considering dissolved non-condensable gas

Journal

PHYSICS OF FLUIDS
Volume 32, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5140981

Keywords

-

Funding

  1. European Union [675528]
  2. Marie Curie Actions (MSCA) [675528] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

In this article, a fully compressible two-phase flow model combined with a multi-component real-fluid phase equilibrium solver is proposed for cavitation modeling. The model is able to simulate the dissolving process of non-condensable gas through resolving the real-fluid phase change equations. A three-dimensional cavitating nozzle test is considered to validate the suggested model. The achieved numerical results have been compared to the available x-ray experiments. The results have confirmed that the model can tackle the phase transition phenomena including gas dissolving and homogeneous nucleation processes. Thus, the cavitation inception has been modeled dynamically when the fluid crosses the phase boundary from the single-phase state to the two-phase state and vice versa. The effects of non-condensable gas on the cavitation inception, development, and unsteadiness have been particularly analyzed, based on the large eddy simulations and x-ray experiments. Finally, the encountered challenges are mentioned, aiming at providing recommendations for similar research studies. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available