4.4 Article

Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 472, Issue 3, Pages 325-334

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-019-02346-4

Keywords

Sympathetic nervous system; Renovascular hypertension; Afferent renal denervation; Proteinuria

Categories

Funding

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) [001]
  2. Sao Paulo Research Foundation [FAPESP 18/02671-3, 16/22140-7]
  3. Brazilian National Research Council [CNPq 406233/2018-7, 0817/2018]
  4. FAPESP [15/23858-6, 17/12383-2]
  5. CNPq
  6. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [17/12383-2, 16/22140-7] Funding Source: FAPESP

Ask authors/readers for more resources

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension. After 4 weeks of clipping the left renal artery, afferent renal denervation (ARD) was performed by exposing the left renal nerve to a 33 mM capsaicin solution for 15 min. After 2 weeks of ARD, we found reduced MAP (18%) and sympathoexcitation to both the ischemic and contralateral kidneys in the hypertensive group. Moreover, a reduction in reactive oxygen species was observed in the ischemic (76%) and contralateral (27%) kidneys in the 2K1C group. In addition, ARD normalized renal function markers and proteinuria and podocin in the contralateral kidney. Taken altogether, we show that the selective removal of afferent fibers is an effective method to reduce MAP and improve renal changes without compromising the function of renal sympathetic fibers in the 2K1C model. Renal afferent nerves may be a new target in neurogenic hypertension and renal dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available