4.6 Article

In vitro adherence of Candida albicans to zirconia surfaces

Journal

ORAL DISEASES
Volume 26, Issue 5, Pages 1072-1080

Publisher

WILEY
DOI: 10.1111/odi.13319

Keywords

Candida; microbial adhesion; salivary proteins; surface properties; zirconia

Ask authors/readers for more resources

Objectives This study aimed to characterize surface properties such as roughness (Ra) and surface-free energy (SFE) of glazed and polished yttria-stabilized zirconia and to evaluate in vitro adherence of fungus Candida albicans and salivary bacteria, Staphylococcus epidermidis, mixed with C. albicans to these substrata. Additionally, the influence of salivary proteins (albumin, mucin and alpha-amylase) on yeast adhesion was studied. Material and methods Ra and SFE of glazed and polished zirconia discs were measured. Specimens were wetted with saliva and salivary proteins prior to incubation with C. albicans and mixed suspension of C. albicans and S. epidermidis for 24 hr, respectively. Microbial adhesion was quantified by counting colony-forming units (CFU). Differences in physicochemical properties were proved by t test. Linear mixed model with the factors type of surface and wetting media was applied to analyse the effects on fungal adhesion (p < .05). Results SFE and Ra of glazed specimens were significantly higher than corresponding values of polished ones. The wetting media significantly changed the fungal binding (p = .0016). Significantly higher quantities of adhering fungi were found after mucin incubation compared to saliva (p = .004). For the factor surface as well as the interaction between surface and wetting media, no statistically significant differences have been found. In mixed suspension, the growth of Candida was completely prevented. Conclusions Glazed and polished zirconia differs in terms of physicochemical surface properties. These differences appear to be modulated by pellicle coating affecting the biomass of adhered Candida. Mucin seems to be good binding sites for adhesion of C. albicans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available