4.5 Article

An optimized fuzzy continuous sliding mode controller combined with an adaptive proportional-integral-derivative control for uncertain systems

Journal

OPTIMAL CONTROL APPLICATIONS & METHODS
Volume 41, Issue 3, Pages 980-1000

Publisher

WILEY
DOI: 10.1002/oca.2580

Keywords

adaptive PID fuzzy control and genetic algorithm; second-order sliding mode control

Ask authors/readers for more resources

This article discusses the design of a hybrid fuzzy variable structure control algorithm combined with genetic algorithm (GA) optimization technique to improve the adaptive proportional-integral-derivative (PID) continuous second-order sliding mode control approach (APID2SMC), recently published in our previous article in the literature. In this article, first, as an improved extension to APID2SMC published recently in the literature, an adaptive proportional-integral-derivative fuzzy sliding mode scheme (APIDFSMC) is presented in which a fuzzy logic controller is added. Second, a GA-based adaptive PID fuzzy sliding mode control approach (APIDFSMC-GA) is introduced to obtain the optimal control parameters of the fuzzy controller in APIDFSMC. The proposed control algorithms are derived based on Lyapunov stability criterion. Simulations results show that the proposed approaches provide robustness for trajectory tracking performance under the occurrence of uncertainties. These simulation results, compared with the results of conventional sliding mode controller, APID2SMC, and standalone classical PID controller, indicate that the proposed control methods yield superior and favorable tracking control performance over the other conventional controllers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available