4.6 Article

Diamond sodium guide star laser

Journal

OPTICS LETTERS
Volume 45, Issue 7, Pages 1898-1901

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.387879

Keywords

-

Categories

Funding

  1. Australian Research Council [DP150102054, LP160101039]
  2. Air Force Office of Scientific Research [FA2386-18-1-4117]
  3. Australian Research Council [LP160101039] Funding Source: Australian Research Council

Ask authors/readers for more resources

Laser guide stars based on the mesospheric sodium layer are becoming increasingly important for applications that require correction of atmospheric scintillation effects. Despite several laser approaches being investigated to date, there remains great interest in developing lasers with the necessary power and spectral characteristics needed for brighter single or multiple guide stars. Here we propose and demonstrate a novel, to the best of our knowledge, approach based on a diamond Raman laser with intracavity Type I second-harmonic generation pumped using a 1018.4 nm fiber laser. A first demonstration with output power of 22 W at 589 nm was obtained at 18.6% efficiency from the laser diode. The laser operates in a single longitudinal mode (SLM) with a measured linewidth of less than 8.5 MHz. The SLM operation is a result of the strong mode competition arising from the combination of a spatial-hole-burning-free gain mechanism in the diamond and the role of sum frequency mixing in the harmonic crystal. Continuous tuning through the Na D line resonance is achieved by cavity length control, and broader tuning is obtained via the tuning of the pump wavelength. We show that the concept is well suited to achieve much higher power and for temporal formats of interest for advanced concepts such as time-gating and Larmor frequency enhancement. (C) 2020 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available