4.6 Article

Cross-coupling effect induced beam shifts for polarized vortex beam at two-dimensional anisotropic monolayer graphene surface

Journal

OPTICS EXPRESS
Volume 28, Issue 6, Pages 8308-8323

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.387340

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [61527820, 61571057, 61575082]

Ask authors/readers for more resources

We investigated beam shifts for an arbitrarily polarized vortex beam reflected and transmitted at two-dimensional (2D) anisotropic monolayer graphene surface. And generalized expressions are theoretically derived for calculating beam shifts of vortex beam. Then, we presented the beam shifts associated with the self-isotropic (SI) effect, self-anisotropic (SA) effect and cross-coupling (XC) effect originated from self-isotropic interaction, self-anisotropic interaction and cross-coupling interaction between isotropic and anisotropic of two-dimensional media, respectively. More importantly, novel optical phenomena resulting from the XC effect are flexibly shown by manipulation OAM. We believe that our results can be extensively extended to 2D anisotropic Dirac semimetals and Weyl semimetals, and expect the results to be significant and contribute to the understanding of the spin and orbit Hall effect of the light. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available