4.6 Article

Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings

Journal

OPTICS EXPRESS
Volume 28, Issue 5, Pages 6251-6260

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.382226

Keywords

-

Categories

Funding

  1. National Research Foundation Singapore [R-263000C24281, R-263000C64281]

Ask authors/readers for more resources

Vernier effect has been captivated as a promising approach to achieve high-performance photonic sensors. However, experimental demonstration of such sensors in mid-infrared (MIR) range, which covers abundant absorption fingerprints of molecules, is still lacking. Here, we report Vernier effect-based thermally tunable photonic sensors using cascaded ring resonators fabricated on the silicon-on-insulator (SOD platform. The radii and the coupling gaps in two rings are investigated as key design parameters. By applying organic liquids on our device, we observe an envelope shift of 48 nm with a sensitivity of 3000 nm/RIU and an intensity drop of 6.7 dB. Besides, our device can be thermally tuned with a sensitivity of 0.091 nm/mW. Leveraging the characteristic molecular absorption in the MIR, our work offers new possibilities for complex index sensing, which has wide applications in on-chip photonic sensors. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available