4.6 Article

Broadly tunable linewidth-invariant Raman Stokes comb for selective resonance photoionization

Journal

OPTICS EXPRESS
Volume 28, Issue 6, Pages 8589-8600

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.384630

Keywords

-

Categories

Funding

  1. Horizon 2020 Framework Programme [654002]
  2. CERN (Knowledge Transfer Fund - Singular Light project)

Ask authors/readers for more resources

We demonstrate a continuously tunable, multi-Stokes Raman laser operating in the visible range (420 - 600 nm). Full spectral coverage was achieved by efficiently cascading the Raman shifted output of a tunable, frequency-doubled Ti:Sapphire laser. Using an optimized hemi-spherical external Raman cavity composed only of a diamond crystal and a single reflecting mirror, producing high power output at high conversion efficiency (>60% from pump to Stokes) for a broad range of wavelengths across the visible. Enhancement of the cascading was achieved by controlling the polarization state of the pump and Stokes orders. The Stokes outputs exhibited a linewidth of 11 +/- 1 GHz for each order, resembling the pump laser linewidth, enabling its use for the intended spectroscopic applications. Furthermore, the Raman laser performance was demonstrated by applying it for the resonance excitation of atomic transitions in calcium. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available