4.5 Article

Avoidance and aggregation create consistent egg distribution patterns of congeneric caddisflies across spatially variable oviposition landscapes

Journal

OECOLOGIA
Volume 192, Issue 2, Pages 375-389

Publisher

SPRINGER
DOI: 10.1007/s00442-019-04587-7

Keywords

Aquatic insects; Congregation; Rivers; Spatial pattern formation; Trichoptera

Categories

Funding

  1. Australian Research Council [DP 160102262] Funding Source: Medline

Ask authors/readers for more resources

Amongst oviparous animals, the spatial distribution of individuals is often set initially by where females lay eggs, with potential implications for populations and species coexistence. Do the spatial arrangements of oviposition sites or female behaviours determine spatial patterns of eggs? The consequences of spatial patterns may be context independent if strong behaviours drive patterns; context dependent if the local environment dominates. We tested these ideas using a guild of stream-dwelling caddisflies that oviposit on emergent rocks, focussing on genera with contrasting behaviours. In naturally occurring oviposition landscapes (riffles with emergent rocks), we surveyed the spatial arrangement and environmental characteristics of all emergent rocks, identified and enumerated egg masses on each. Multiple riffles were surveyed to test for spatially invariant patterns and behaviours. In landscapes, we tested for spatial clumping of oviposition sites exploited by each species and for segregation of congeneric species. At oviposition sites, we characterised the frequency distributions of egg masses and tested for species associations. Genus-specific behaviours produced different spatial patterns of egg masses in the same landscapes. Congregative behaviour of Ulmerochorema spp. at landscape scales and an aggregative response at preferred oviposition sites led to clumped patterns, local aggregation and species overlap. In contrast, avoidance behaviours by congeners of Apsilochorema resulted in no or weak clumping, and species segregation in some landscapes. Spatial patterns were consistent across riffles that varied in area and oviposition site density. These results suggest that quite different oviposition behaviours may be context independent, and the consequences of spatial patterns may be spatially invariant also.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available