4.6 Article

Fractal catastrophes

Journal

NEW JOURNAL OF PHYSICS
Volume 22, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ab60f7

Keywords

fractals; statistical mechanics; large deviation theory; spatial clustering; catastrophe theory; non-equilibrium physics

Funding

  1. Knut and Alice Wallenberg Foundation [KAW2014.0048]
  2. VR grant [2017-3865]

Ask authors/readers for more resources

We analyse the spatial inhomogeneities ('spatial clustering') in the distribution of particles accelerated by a force that changes randomly in space and time. To quantify spatial clustering, the phase-space dynamics of the particles must be projected to configuration space. Folds of a smooth phase-space manifold give rise to catastrophes ('caustics') in this projection. When the inertial particle dynamics is damped by friction, however, the phase-space manifold converges towards a fractal attractor. It is believed that caustics increase spatial clustering also in this case, but a quantitative theory is missing. We solve this problem by determining how projection affects the distribution of finite-time Lyapunov exponents (FTLEs). Applying our method in one spatial dimension we find that caustics arising from the projection of a dynamical fractal attractor ('fractal catastrophes') make a distinct and universal contribution to the distribution of spatial FTLEs. Our results explain a projection formula for the spatial fractal correlation dimension, and how a fluctuation relation for the distribution of FTLEs for white-in-time Gaussian force fields breaks upon projection. We explore the implications of our results for heavy particles in turbulence, and for wave propagation in random media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available