4.8 Article

Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion

Journal

NATURE CHEMISTRY
Volume 12, Issue 2, Pages 137-144

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41557-019-0385-8

Keywords

-

Ask authors/readers for more resources

Inorganic semiconductor nanocrystals interfaced with spin-triplet exciton-accepting organic molecules have emerged as promising materials for converting incoherent long-wavelength light into the visible range. However, these materials to date have made exclusive use of nanocrystals containing toxic elements, precluding their use in biological or environmentally sensitive applications. Here, we address this challenge by chemically functionalizing non-toxic silicon nanocrystals with triplet-accepting anthracene ligands. Photoexciting these structures drives spin-triplet exciton transfer from silicon to anthracene through a single 15 ns Dexter energy transfer step with a nearly 50% yield. When paired with 9,10-diphenylanthracene emitters, these particles readily upconvert 488-640 nm photons to 425 nm violet light with efficiencies as high as 7 +/- 0.9% and can be readily incorporated into aqueous micelles for biological use. Our demonstration of spin-triplet exciton transfer from silicon to molecular triplet acceptors can critically enable new technologies for solar energy conversion, quantum information and near-infrared driven photocatalysis. Quantum dots functionalized with energy-accepting dyes hold promise for converting low-energy photons into higher-energy visible light for bioimaging, catalysis and solar energy harvesting. Now, it has been shown that non-toxic silicon quantum dots can be used in these systems; the transfer of spin-triplet excitons to molecules at their surface has been observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available