4.8 Article

Cell stress in cortical organoids impairs molecular subtype specification

Journal

NATURE
Volume 578, Issue 7793, Pages 142-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-1962-0

Keywords

-

Funding

  1. NIH [U01MH114825, F32NS103266, K99NS111731]
  2. California Institute for Regenerative Medicine (CIRM) through the CIRM Center of Excellence in Stem Cell Genomics [GC1R-06673-C]

Ask authors/readers for more resources

Cortical organoids are self-organizing three-dimensional cultures that model features of the developing human cerebral cortex(1,2). However, the fidelity of organoid models remains unclear(3-5). Here we analyse the transcriptomes of individual primary human cortical cells from different developmental periods and cortical areas. We find that cortical development is characterized by progenitor maturation trajectories, the emergence of diverse cell subtypes and areal specification of newborn neurons. By contrast, organoids contain broad cell classes, but do not recapitulate distinct cellular subtype identities and appropriate progenitor maturation. Although the molecular signatures of cortical areas emerge in organoid neurons, they are not spatially segregated. Organoids also ectopically activate cellular stress pathways, which impairs cell-type specification. However, organoid stress and subtype defects are alleviated by transplantation into the mouse cortex. Together, these datasets and analytical tools provide a framework for evaluating and improving the accuracy of cortical organoids as models of human brain development. Single-cell RNA sequencing clarifies the development and specification of neurons in the human cortex and shows that cell stress impairs this process in cortical organoids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available