4.8 Article

Epigenetic therapy inhibits metastases by disrupting premetastatic niches

Journal

NATURE
Volume 579, Issue 7798, Pages 284-+

Publisher

NATURE RESEARCH
DOI: 10.1038/s41586-020-2054-x

Keywords

-

Funding

  1. Brockman Foundation
  2. Skalka-Kronsberg family
  3. Banks Family Foundation, Bermuda
  4. Van Andel Institute through the Van Andel Institute-Stand Up To Cancer

Ask authors/readers for more resources

Cancer recurrence after surgery remains an unresolved clinical problem(1-3). Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites(4-6). There are currently no effective interventions that prevent the formation of the premetastatic microenvironment(6,7). Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available