4.6 Article

Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.nano.2020.102158

Keywords

Iron oxide nanoparticles; Macrophages; Fenton reaction; Reactive oxygen species; S. aureus

Funding

  1. National Institute of Health [NIH R01 NR015674]

Ask authors/readers for more resources

Iron oxide nanoparticles (IONPs) have been increasingly used in various biomedical applications in preclinical and clinical settings. Although the interactions of IONPs with macrophages have been well-reported in the context of nanoparticle toxicity, harnessing the capacity of IONPs in reprograming macrophages towards bactericidal activity has not been explored. Here, using an in vitro culture model of macrophages and an in vivo mouse model of skin wound infection by Staphylococcus aureus (S. aureus), we demonstrated that IONPs in combination with a strategy to trigger the Fenton reaction could significantly enhance bactericidal effects of macrophages against intracellular S. aureus by inducing a M1 macrophage polarization that stimulates the production of reactive oxygen species. Our study supports that harnessing the characteristic of IONPs to tune macrophage polarization to exhibit a bactericidal activity may provide a new strategy for treating infectious diseases. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available