4.4 Article

Improving Hurricane Analyses and Predictions with TCI, IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid Data Assimilation System for HWRF. Part II: Observation Impacts on the Analysis and Prediction of Patricia (2015)

Journal

MONTHLY WEATHER REVIEW
Volume 148, Issue 4, Pages 1407-1430

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-19-0075.1

Keywords

Hurricanes; typhoons; Aircraft observations; Dropsondes; In situ atmospheric observations; Data assimilation; Regional models

Funding

  1. ONR [N00014-14-1-0125, N000141712111]
  2. NOAA [NA14NWS4680021, NA16NWS4680028]
  3. U.S. Department of Defense (DOD) [N000141712111] Funding Source: U.S. Department of Defense (DOD)

Ask authors/readers for more resources

Diverse observations, such as the High Definition Sounding System (HDSS) dropsonde observations from the Tropical Cyclone Intensity (TCI) program, the Tail Doppler Radar (TDR), Stepped Frequency Microwave Radiometer (SFMR), and flight-level observations from the Intensity Forecasting Experiment (IFEX) program, and the atmospheric motion vectors (AMVs) from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) simultaneously depicted the three-dimensional (3D) structure of Hurricane Patricia (2015). Experiments are conducted to understand the relative impacts of each of these observation types on Patricia's analysis and prediction using the Gridpoint Statistical Interpolation (GSI)-based ensemble-variational data assimilation system for the Hurricane Weather Research and Forecasting (HWRF) Model. In comparing the impacts of assimilating each dataset individually, results suggest that 1) the assimilation of 3D observations produces better TC structure analysis than the assimilation of two-dimensional (2D) observations; 2) the analysis from assimilating observations collected from platforms that only sample momentum fields produces a less improved forecast with either short-lived impacts or slower intensity spinup as compared to the forecast produced after assimilating observations collected from platforms that sample both momentum and thermal fields; and 3) the structure forecast tends to benefit more from the assimilation of inner-core observations than the corresponding intensity forecast, which implies better verification metrics are needed for future TC forecast evaluation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available