4.7 Article

Numerical convergence of hydrodynamical simulations of galaxy formation: the abundance and internal structure of galaxies and their cold dark matter haloes

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 493, Issue 2, Pages 2926-2951

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa316

Keywords

methods: numerical; galaxies: evolution; galaxies: formation; dark matter

Funding

  1. Australian Research Council [FT160100250]
  2. Dutch Research Council (NWO) [Veni 639, 041, 749]
  3. Science and Technology Facilities Council [ST/P000541/1]
  4. BIS National E-infrastructure capital grant [ST/K00042X/1]
  5. STFC capital grant [ST/K00087X/1]
  6. DiRAC Operations grant [ST/K003267/1]
  7. Durham University
  8. STFC [ST/L000636/1, ST/T001348/1, ST/T001569/1, ST/R001014/1, ST/P003400/1, ST/V002384/1, ST/V002376/1, ST/M006948/1, ST/M007073/1, ST/P000541/1, ST/S003916/1, ST/R001006/1, ST/S003762/1, ST/M007006/1, ST/M007065/1, ST/T001372/1, ST/R00689X/1, ST/K00333X/1, ST/K00042X/1, ST/R000832/1, ST/V002635/1, ST/T00049X/1, ST/M007618/1, ST/R001049/1, ST/J005673/1, ST/P000673/1, ST/P002447/1, ST/M006530/1, ST/T001550/1] Funding Source: UKRI
  9. Australian Research Council [FT160100250] Funding Source: Australian Research Council

Ask authors/readers for more resources

We address the issue of numerical convergence in cosmological smoothed particle hydrodynamics simulations using a suite of runs drawn from the EAGLE project. Our simulations adopt subgrid models that produce realistic galaxy populations at a fiducial mass and force resolution, but systematically vary the latter in order to study their impact on galaxy properties. We provide several analytic criteria that help guide the selection of gravitational softening for hydrodynamical simulations, and present results from runs that both adhere to and deviate from them. Unlike dark matter-only simulations, hydrodynamical simulations exhibit a strong sensitivity to gravitational softening, and care must be taken when selecting numerical parameters. Our results - which focus mainly on star formation histories, galaxy stellar mass functions and sizes - illuminate three main considerations. First, softening imposes a minimum resolved escape speed, v(epsilon), due to the binding energy between gas particles. Runs that adopt such small softening lengths that v(epsilon )greater than or similar to 10 km s(-1) (the sound speed in ionized similar to 10(4) K gas) suffer from reduced effects of photoheating. Secondly, feedback from stars or active galactic nuclei may suffer from numerical overcooling if the gravitational softening length is chosen below a critical value, epsilon(eFB). Thirdly, we note that small softening lengths exacerbate the segregation of stars and dark matter particles in halo centres, often leading to the counterintuitive result that galaxy sizes increase as softening is reduced. The structure of dark matter haloes in hydrodynamical runs respond to softening in a way that reflects the sensitivity of their galaxy populations to numerical parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available