4.6 Article

Local Electronic Structure in AlN Studied by Single-Crystal 27Al and 14N NMR and DFT Calculations

Journal

MOLECULES
Volume 25, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/molecules25030469

Keywords

AlN; single-crystal NMR; N-14 NMR; Al-27 NMR; chemical shift tensor; quadrupole coupling tensor

Funding

  1. University of Munich, LMU

Ask authors/readers for more resources

Both the chemical shift and quadrupole coupling tensors for N-14 and Al-27 in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of N-14 (I=1) and Al-27 (I=5/2), the quadrupolar coupling constants were determined to chi(N-14)=(8.19 +/- 0.02) kHz, and chi(Al-27)=(1.914 +/- 0.001) MHz. The chemical shift parameters obtained from the data fit were delta iso=-(292.6 +/- 0.6) ppm and delta Delta=-(1.9 +/- 1.1) ppm for 14N, and (after correcting for the second-order quadrupolar shift) delta iso=(113.6 +/- 0.3) ppm and delta Delta=(12.7 +/- 0.6) ppm for Al-27. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for Al-27 with (chi) over bar (calc) = (1.791 +/- 0.003) MHz, but not for N-14 with (chi) over bar (calc) = -(19.5 +/- 3.3) kHz.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available