4.7 Article

Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways

Journal

MOLECULAR ONCOLOGY
Volume 14, Issue 2, Pages 373-386

Publisher

WILEY
DOI: 10.1002/1878-0261.12593

Keywords

hepatocellular carcinoma; METTL3; p53; RDM1; RNA methylation

Categories

Funding

  1. National Key R&D Program of China [2017YFC1309000]
  2. National Natural Science Foundation of China [81802762, 81572405, 81572406, 81502079]
  3. National Natural Science Foundation of Guangdong Province [2018B030311005]
  4. Science and Technology Program of Guangzhou [201707020038]

Ask authors/readers for more resources

Hepatocellular carcinoma (HCC), with its ineffective therapeutic options and poor prognosis, represents a global threat. In the present study, we show that RAD52 motif 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, is downregulated in HCC tissues and suppresses tumor growth. In clinical HCC samples, low expression of RDM1 correlates with larger tumor size, poor tumor differentiation, and unfavorable survival. In vitro and in vivo data demonstrate that knockdown of RDM1 increases HCC cell proliferation, colony formation, and cell population at G2/M phase, whereas RDM1 overexpression results in the opposite phenotypes. Mechanistically, RDM1 binds to the tumor suppressor p53 and enhances its protein stability. In the presence of p53, RDM1 suppresses the phosphorylation of Raf and ERK. Overexpression of p53 or treatment with ERK inhibitor significantly abolishes cell proliferation induced by the depletion of RDM1. In addition, overexpression of methyltransferase-like 3 markedly induces N6-methyladenosine modification of RDM1 mRNA and represses its expression. Taken together, our study indicates that RDM1 functions as a tumor suppressor and may be a potential prognostic and therapeutic factor for HCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available