4.7 Article

A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite for quasi-solid-state supercapacitors

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 293, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.micromeso.2019.109796

Keywords

3-D graphene; N-doped porous carbon; Covalent cross-linking; Supercapacitors

Funding

  1. Key Basic Research Program of Hebei Province of China [17964402D, 18964408D]

Ask authors/readers for more resources

A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite (NPC/HG) was synthesized by carbonizing the precursor mixture of casein, graphene oxide (GO) and KOH. The polypeptide and amino acid produced by hydrolysis of casein in KOH solution could react with GO, which was conducive to the uniform coating of the NPC precursor on GO and the mutual crosslinking of GO. After carbonization, NPC with a high specific surface area was uniformly coated in the two-dimensional plane of graphene, and graphene was bonded into a 3-D structure by the solder-NPC, moreover, the KOH was an activator of NPC and also reacted with carbon atoms of GO to form holes in the carbonization process. The NPC/HG-2 showed the high specific surface area of 1135.3 m(2) g(-1), the rich hierarchical pore structure, and the high nitrogen doping amount of 6 at%. Used in the symmetric supercapacitor, the NPC/HG-2 exhibited the energy density of 29.33 Wh kg(-1) at a power density of 42.75 kW kg(-1), lower internal resistance and the excellent rate performance due to its unique internal pore structure. Moreover, the voltage of the NPC/HG-2 symmetric quasi-solid-state supercapacitor was up to 1.4 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available