4.6 Article

Creep Behaviors of Two Near-Eutectic Al-Si-Cu-Mn Heat-Resistant Alloys Containing Dendritic Mn-Rich Primary Phase or Modified Star-Like Cr-Mn-Rich Primary Phase

Publisher

SPRINGER
DOI: 10.1007/s11661-020-05665-9

Keywords

-

Funding

  1. Jiangsu Key Laboratory of Advanced Metallic Materials [BM2007204]
  2. Fundamental Research Funds for the Central Universities [2242016k40011]

Ask authors/readers for more resources

In this study, the creep responses of two near-eutectic Al-Si-Cu-Mn alloys, Al-12wt pctSi-4 pctCu-1.2wt pctMn alloy (Alloy-1, containing dendritic Mn-rich primary phase) and Al-12wt pctSi-4 pctCu-2wt pctMn-1wt pctCr alloy (Alloy-2, containing star-like Cr-Mn rich primary phase), were investigated from 448 K to 523 K at 40 to 70 MPa applied stress. Results show that with 100 hours of exposure at 448 K/40 to 70 MPa, true steady-state creep was not attained. However, at 473 to 523 K/40 to 70 MPa, both the alloys showed a fixed creep rate establishing steady-state creep. The creep curves of the studied alloys illustrate that Alloy-1 exhibits lower creep rates and less creep strains than Alloy-2 in each combination of temperature and applied stress. Considering the creep rates and total creep strains after 100 hours of exposure, Alloy-1 possesses much better creep resistance than Alloy-2, even though the high-temperature strength of Alloy-2 is higher than that of Alloy-1 at 448 K and 523 K. Higher strength at high temperatures does not mean high creep resistance at high temperatures. At low to moderately high temperatures (0.48 to 0.53 T-m where T-m is the equilibrium melting point of pure Al in K) and applied stress of 40 to 70 MPa, the creep mechanisms in Alloy-1 and Alloy-2 are similar and diffusion is the rate-controlling process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available