4.5 Article

BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model

Journal

MEDICAL HYPOTHESES
Volume 134, Issue -, Pages -

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.mehy.2019.109531

Keywords

Biomedical signal processing; Attention module; Magnetic resonance image; Hypercolumn technique; Brain tumor

Ask authors/readers for more resources

A brain tumor is a mass that grows unevenly in the brain and directly affects human life. This mass occurs spontaneously because of the tissues surrounding the brain or the skull. Surgical methods are generally preferred for the treatment of the brain tumor. Recently, models of deep learning in the diagnosis and treatment of diseases in the biomedical field have gained intense interest. In this study, we propose a new convolutional neural network model named BrainMRNet. This architecture is built on attention modules and hypercolumn technique; it has a residual network. Firstly, image is preprocessed in BrainMRNet. Then, this step is transferred to attention modules using image augmentation techniques for each image. Attention modules select important areas of the image and the image is transferred to convolutional layers. One of the most important techniques that the BrainMRNet model uses in the convolutional layers is hypercolumn. With the help of this technique, the features extracted from each layer of the BrainMRNet model are retained by the array structure in the last layer. The aim is to select the best and the most efficient features among the features maintained in the array. Accessible magnetic resonance images were used to detect brain tumor with the BrainMRNet model. BrainMRNet model is more successful than the pre-trained convolutional neural network models (AlexNet, GoogleNet, VGG-16) used in this study. The classification success achieved with the BrainMRNet model was 96.05%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available