4.6 Article

Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel

Journal

MATERIALS LETTERS
Volume 258, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.matlet.2019.126819

Keywords

Welding; High-nitrogen steel; Boron; CGHAZ; Microstructure

Funding

  1. National Key R&D Program of China [2017YFB0703002]

Ask authors/readers for more resources

The effect of boron on intragranular ferrite (IGF) nucleation mechanism in the simulated coarse grain heated-affected zone (CGHAZ) of a high-nitrogen steel was investigated. When boron (B) was added to the steel, the ferrite transformation temperature increased from 775 degrees C to 800 degrees C and the amount of polygonal ferrite increased from 63.2% to 78.6%. Consequently, the ductile-to-brittle transition temperature decreased from -30 degrees C to -50 degrees C. (Ti,V)(C,N)-MnS-BN, MnS-BN, Al2O3-MnS-BN, and BN served as IGF nucleation sites. The core of the complex precipitates was formed by undissolved (Ti,V)(C,N)-MnS, Al2O3-MnS, and MnS, with a BN cap formed on the undissolved precipitates, which increased the IGF nucleation potency. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available