4.4 Article

Self-Healing Metallo-Supramolecular Amphiphilic Polymer Conetworks

Journal

MACROMOLECULAR CHEMISTRY AND PHYSICS
Volume 221, Issue 4, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/macp.201900432

Keywords

activated esters; amphiphilic polymer conetworks (APCNs); metallo-supramolecular polymers; self-healing; zinc(II) complexes

Funding

  1. FNR (Luxembourg National Research Fund) through SUSMAT
  2. Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials [PP00P2_172927]

Ask authors/readers for more resources

The current challenge in self-healing materials resides in the design of materials which exhibit improved mechanical properties and self-healing ability. The design of phase-separated nanostructures combining hard and soft phases represents an attractive approach to overcome this limitation. Amphiphilic polymer conetworks are nanostructured materials with robust mechanical properties, which can be tailored by tuning the polymer composition and chemical functionality. This article highlights the design of phase-separated nanostructured polymers from metallo-supramolecular amphiphilic polymer conetworks, and their application for self-healing surfaces. The synthesis of poly(N-(pyridin-4-yl)acrylamide)-l-polydimethylsiloxane polymer conetworks from the poly(pentafluorophenyl acrylate)-l-polydimethylsiloxane activated ester is presented. Loading of ZnCl2 salt into the phase-separated polymer conetwork strengthens the network by cross-linking the poly(N-(pyridin-4-yl)acrylamide) phases, while offering reversible interactions needed for self-healing ability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available