4.7 Article

HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA

Journal

LIFE SCIENCES
Volume 239, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2019.117020

Keywords

HMGB1/TLR4 signaling; Hippocampal neuronal apoptosis; Autophagy; Intermittent hypoxia; Type 2 diabetes mellitus

Funding

  1. National Natural Science Foundation of China [81570084, 81270144]
  2. China Postdoctoral Science Foundation [2015M581309]

Ask authors/readers for more resources

Aims: Obstructive sleep apnea (OSA) combined with type 2 diabetes (T2DM) may lead to cognitive dysfunction. We previously reported that cognitive impairment is exacerbated in KKAy mice exposed to intermittent hypoxia (IH), during which the DNA binding protein HMGB1 mediates hippocampal neuronal apoptosis by maintaining microglia-associated neuroinflammation, but the underlying mechanism remains largely unknown. Materials and methods: We performed immunofluorescence, Western blotting, and immunohistochemistry experiments in mouse hippocampal tissues and HT22 cells. KKAy type 2 diabetes model mice and normal C57BL/6J mice were exposed to IH or intermittent normoxia. HT22 cells were cultured in high glucose medium and exposed to IH or intermittent normoxia. We transfected HMGB1 siRNA into HT22 cells and then treated them with high glucose combined with intermittent hypoxia. Key findings: In conclusion, IH aggravated apoptosis and autophagy defects in T2DM mice, and increased the protein expression of HMGB1 and TLR4. This was also confirmed in HG + IH-treated hippocampal HT22 cells. HMGB1 siRNA can significantly reduce the protein expression of HMGB1 and TLR4, reverse neuronal apoptosis and enhance autophagy. Significance: We believe that HMGB1 is a key factor in the regulation of hippocampal neuronal apoptosis and autophagy defects in T2DM combined with OSA. Targeting HMGB1/TLR4 signaling as a novel approach may delay or prevent the increased apoptosis and decreased autophagy induced by T2DM combined with OSA, and may ultimately improve cognitive dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available