4.6 Article

Preparation of a Solid Amine Microspherical Adsorbent with High CO2 Adsorption Capacity

Journal

LANGMUIR
Volume 36, Issue 26, Pages 7715-7723

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b03694

Keywords

-

Funding

  1. National Natural Science Foundation of China [51873238]
  2. Science and Technology Project of Guangdong Province [2016A010103013, 2017B090915001]

Ask authors/readers for more resources

Amine-skeleton solid-amine materials are promising adsorbents for CO2 capture from flue gas. Here, a novel solid-amine microsphere was synthesized by cross-linking the skeleton poly(ethylenimine) (PEI) with ethylene glycol diglycidyl ether in a facile one-pot W/O emulsion system. The material had a remarkable CO2 adsorption capacity of 7.28 mmol/g in the presence of moisture at 20 degrees C, 0.1 bar. The highest ratio of breakthrough capacity to saturation capacity was ca. 84%. According to kinetic simulation, the Avrami kinetic model could better describe the adsorption process of CO2 under different temperatures, in which the value of R-2 was above 0.99 and n was between 1 and 2, indicating that both physical and chemical adsorption mechanisms were performed during adsorption. Moreover, the material had a high swelling speed. Equilibrium was established within 30 s, and the swelling ratio was 271% at equilibrium. The saturated adsorbent could be easily regenerated with a regeneration efficiency of 94.63% after six cycles. The PEI microsphere appears to be a promising candidate material for CO2 capture from flue gas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available