4.3 Article

Will Lynx Lose Their Edge? Canada Lynx Occupancy in Washington

Journal

JOURNAL OF WILDLIFE MANAGEMENT
Volume 84, Issue 4, Pages 705-725

Publisher

WILEY
DOI: 10.1002/jwmg.21846

Keywords

abiotic; biotic; climate change; future projection; Lynx canadensis; motion-sensing cameras; occupancy modeling

Funding

  1. Seattle City Light Wildlife Research Grant
  2. Conservation Northwest
  3. United States Forest Service
  4. Department of the Interior Northwest Climate Adaptation Science Center Research Fellowship
  5. National Science Foundation Graduate Research Fellowship Program
  6. Washington State University

Ask authors/readers for more resources

Populations of species located at southern range edges may be particularly vulnerable to the effects of climate change as warming temperatures and subsequent changes to ecosystems exceed species-specific tolerances. One such species is Canada lynx (Lynx canadensis), a cold-adapted mesocarnivore that maintains a large core population in Alaska, USA, and Canada but exists within several peripheral populations in the contiguous United States. Increases in temperature, declines in snow pack, and climate-influenced increases in fire frequency and intensity, could negatively affect lynx populations, threatening their long-term persistence in the continental United States. Despite these threats, our understanding of broad-scale effects on lynx occupancy and the extent of current lynx distribution in many of these peripheral populations is minimal. We conducted an occupancy survey of lynx in Washington, USA, using a spatially extensive camera-trapping array covering 7,000 km(2) of potential lynx habitat. We used the resulting database of detection data to develop single-season occupancy models to examine the abiotic and biotic effects on current lynx occupancy and predict future lynx distribution based on climate change forecasts. Our results show lynx occupancy across the Washington landscape is restricted and dictated largely by abiotic factors, disturbance regimes, and distance from source populations in Canada. Predictions of future distribution suggest lynx will be increasingly challenged by climatic changes, particularly at the southern and lower elevation portions of their range in Washington. Our results paint an alarming picture for lynx persistence in Washington that is relevant to current deliberations regarding lynx delisting from the Endangered Species Act. Our simple camera design was a highly effective method for surveying lynx across broad spatial scales, and could be a key monitoring tool for lynx that is easy to implement by researchers and government agencies. (c) 2020 The Wildlife Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available