4.6 Article

Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2020.103705

Keywords

Pelvis cage; Porous load-bearing biomaterials; Homogenization; Topology optimization; Additive manufacturing; Interfacial stress; Micromotion

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Network for Holistic Innovation in Additive Manufacturing

Ask authors/readers for more resources

Aseptic loosening and mechanical failure of acetabular reinforcement components are among the main causes of their reduced service life. Current acetabular implants typically feature a structural solid layer that provides load bearing capacity, coated with a foam of uniform porosity to reduce stress shielding and implant loosening. This paper presents an alternative concept for a 3D printed cage that consists of a multifunctional fully porous layer with graded attributes that integrate both structural function and bone in-growth properties. The design comprises a hemispherical cup affixed to a superior flange with architecture featuring an optimally graded porosity. The methodology here presented combines an upscaling mechanics scheme of lattice materials with densitybased topology optimization, and includes additive manufacturing constraints and bone ingrowth requirements in the problem formulation. The numerical results indicate a 21.4% reduction in the maximum contact stress on the bone surface, and a 26% decrease in the bone-implant interface peak micromotion, values that are indicative of enhanced bone ingrowth and implant long-term stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available