4.5 Article Proceedings Paper

Novel Chimeric Immuno-Oncolytic Virus CF33-hNIS-antiPDL1 for the Treatment of Pancreatic Cancer

Journal

JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS
Volume 230, Issue 4, Pages 709-717

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jamcollsurg.2019.12.027

Keywords

-

Categories

Funding

  1. Department of Defense [CA180425]
  2. California Institute for Regenerative Medicine [CIRM DISC210524]
  3. NIH [P30CA033572]
  4. American Cancer Society Mentored Research Scholar Grant [MRSG-16-047-01-MPC]

Ask authors/readers for more resources

BACKGROUND: Peritoneal carcinomatosis (PC) from pancreatic ductal adenocarcinoma (PDAC) is fatal. Our preclinical study presents an effective treatment against PDAC PC using a novel oncolytic viral agent, CF33-hNIS-antiPDL1. STUDY DESIGN: CF33-hNIS-antiPDL1 is a genetically engineered chimeric orthopoxvirus, CF33, armed with the human Sodium Iodide Symporter (hNIS) and anti-PD-L1 antibody (anti-PD-L1). The in vitro cytotoxic ability of this virus against 5 PDAC cell lines was tested at various doses (multiplicity of infection [MOI] = 0.01, 0.1, 1, 10). Production and blockade function of virus-encoded anti-PD-L1 antibody were verified using immunoblot, immunoprecipitation, and PD-1/PD-L1 bioassay. In vivo mouse models of PC, with or without subcutaneous (SC) tumors, created by injecting AsPC-1-ffluc cells into nude mice, were treated with PBS or a single dose (1 x 10(5) plaque-forming units) of either intraperitoneal (IP) or IV injection of CF33-hNIS-antiPDL1. Mice with PC tumors were treated on days 0, 2, or 14 after tumor implantation. RESULTS: CF33-hNIS-antiPDL1 killed PDAC cells in a dose-dependent manner, achieving >90% cell killing by day 8. Cells infected with CF33-hNIS-antiPDL1 produced bioactive anti-PD-L1 antibody, which blocked PD-1/PD-L1 interaction. In vivo, a single dose of virus reduced tumor burden and prolonged survival of treated mice. It was observed that IP administration of CF33-hNIS-antiPDL1 was more effective than IV administration. CONCLUSIONS: CF33-hNIS-antiPDL1 virus is effective in infecting and killing human PDACs and producing functional anti-PD-L1 antibody. Intraperitoneal delivery of CF33-hNIS-antiPDL1 effectively reduces peritoneal tumor burden and improves survival after only 1 dose and is superior to IV delivery. (C) 2020 by the American College of Surgeons. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available