4.8 Article

Cobalt-Catalyzed Asymmetric Hydrogenation of alpha,beta-Unsaturated Carboxylic Acids by Homolytic H-2 Cleavage

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 11, Pages 5272-5281

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b13876

Keywords

-

Funding

  1. National Science Foundation (NSF) Grant Opportunities for Academic Liaison with Industry (GOALI) grant [CHE-1855719]

Ask authors/readers for more resources

The asymmetric hydrogenation of alpha,beta-unsaturated carboxylic acids using readily prepared bis(phosphine) cobalt(0) 1,5-cyclooctadiene precatalysts is described. Di-, tri-, and tetrasubstituted acrylic acid derivatives with various substitution patterns as well as dehydro-a-amino acid derivatives were hydrogenated with high yields and enantioselectivities, affording chiral carboxylic acids including Naproxen, (S)-Flurbiprofen, and a D-DOPA precursor. Turnover numbers of up to 200 were routinely obtained. Compatibility with common organic functional groups was observed with the reduced cobalt(0) precatalysts, and protic solvents such as methanol and isopropanol were identified as optimal. A series of bis(phosphine) cobalt(II) bis(pivalate) complexes, which bear structural similarity to state-of-the-art ruthenium(II) catalysts, were synthesized, characterized, and proved catalytically competent. X-band EPR experiments revealed bis(phosphine)cobalt(II) bis(carboxylate)s were generated in catalytic reactions and were identified as catalyst resting states. Isolation and characterization of a cobalt(II)-substrate complex from a stoichiometric reaction suggests that alkene insertion into the cobalt hydride occurred in the presence of free carboxylic acid, producing the same alkane enantiomer as that from the catalytic reaction. Deuterium labeling studies established homolytic H-2 (or D-2) activation by Co(0) and cis addition of H-2 (or D-2) across alkene double bonds, reminiscent of rhodium(I) catalysts but distinct from ruthenium(II) and nickel(II) carboxylates that operate by heterolytic H-2 cleavage pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available