4.8 Article

Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes

Journal

JOURNAL OF POWER SOURCES
Volume 450, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.227593

Keywords

Micrometer-sized silicon anodes; Carbon nanotubes; Cu3Si silicide; High rate; Structural stability

Funding

  1. National Natural Science Foundation of China [61534005, 21761132030]
  2. General Armaments Department, People's Liberation Army of China [6140721040411]
  3. Natural Science Foundation of Jiangxi Province [20192ACBL20048]

Ask authors/readers for more resources

potholed Micrometer-sized silicon powders, due to its high specific capacity, easy accessibility, and low cost, have been regarded as an attractive anode material for lithium-ion batteries. The severer mechanical instability and high inter-particle resistance during cycling, however, hinder its further application. In this work, a novel potholed micrometer-sized silicon powders (PMSi)/carbon nanotubes (CNT)/C electrode is proposed. The resulting three-dimensional (3D) conductive framework and multi-point contact network exhibit ideal structural stability and high-rate cycling property. Hence, the volume resistivity of PMSi/CNT/C (157 Omega m) is reduced significantly relative to traditional PMSi/commercial carbon nanotubes (CCT)/C composite (400 Omega m). By testing the fabricated half-cell LIB with the PMSi/CNT/C composite anode, high reversible specific capacity of 2533 mAh g(-1) with a remarkable high initial coulombic efficiency of 89.07% and over 840 mA h g(-1) for 1000 cycles at 2 A g(-1) is measured. Even at the rate of 20 A g(-1), the PMSi/CNT/C electrode shows a capacity of 463 mAh g(-1). A full cell contained the PMSi/CNT/C anode and a LiFePO4/LiMn2O4 cathode successfully ignites an LED array (similar to 1.5 W), further demonstrating its outstanding electrical driving property.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available